Finite Element Exterior Calculus for Evolution Problems

نویسنده

  • ANDREW GILLETTE
چکیده

ABSTRACT. Arnold, Falk, and Winther [Bull. Amer. Math. Soc. 47 (2010), 281–354] showed that mixed variational problems, and their numerical approximation by mixed methods, could be most completely understood using the ideas and tools of Hilbert complexes. This led to the development of the Finite Element Exterior Calculus (FEEC) for a large class of linear elliptic problems. More recently, Holst and Stern [Found. Comp. Math. 12:3 (2012), 263–293 and 363–387] extended the FEEC framework to semi-linear problems, and to problems containing variational crimes, allowing for the analysis and numerical approximation of linear and nonlinear geometric elliptic partial differential equations on Riemannian manifolds of arbitrary spatial dimension, generalizing surface finite element approximation theory. In this article, we develop another distinct extension to the FEEC, namely to parabolic and hyperbolic evolution systems, allowing for the treatment of geometric and other evolution problems. Our approach is to combine the recent work on the FEEC for elliptic problems with a classical approach to solving evolution problems via semi-discrete finite element methods, by viewing solutions to the evolution problem as lying in time-parameterized Hilbert spaces (or Bochner spaces). Building on classical approaches by Thomée for parabolic problems and Geveci for hyperbolic problems, we establish a priori error estimates for Galerkin FEM approximation in the natural parametrized Hilbert space norms. In particular, we recover the results of Thomée and Geveci for two-dimensional domains and lowest-order mixed methods as special cases, effectively extending their results to arbitrary spatial dimension and to an entire family of mixed methods. We also show how the Holst and Stern framework allows for extensions of these results to certain semi-linear evolution problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Exterior Calculus for Parabolic Evolution Problems on Riemannian Hypersurfaces

Over the last ten years, the Finite Element Exterior Calculus (FEEC) has been developed as a general framework for linear mixed variational problems, their numerical approximation by mixed methods, and their error analysis. The basic approach in FEEC, pioneered by Arnold, Falk, and Winther in two seminal articles in 2006 and 2010, interprets these problems in the setting of Hilbert complexes, l...

متن کامل

Finite Element Exterior Calculus for Parabolic Problems

In this paper, we consider the extension of the finite element exterior calculus from elliptic problems, in which the Hodge Laplacian is an appropriate model problem, to parabolic problems, for which we take the Hodge heat equation as our model problem. The numerical method we study is a Galerkin method based on a mixed variational formulation and using as subspaces the same spaces of finite el...

متن کامل

Finite element exterior calculus, homological techniques, and applications

Finite element exterior calculus is an approach to the design and understanding of finite element discretizations for a wide variety of systems of partial differential equations. This approach brings to bear tools from differential geometry, algebraic topology, and homological algebra to develop discretizations which are compatible with the geometric, topological, and algebraic structures which...

متن کامل

A Posteriori Error Estimates for Finite Element Exterior Calculus: The de Rham Complex

Finite element exterior calculus (FEEC) has been developed over the past decade as a framework for constructing and analyzing stable and accurate numerical methods for partial differential equations by employing differential complexes. The recent work of Arnold, Falk, and Winther includes a well-developed theory of finite element methods for Hodge–Laplace problems, including a priori error esti...

متن کامل

On the coupling of BEM and FEM for exterior problems for the Helmholtz equation

This paper deals with the coupled procedure of the boundary element method (BEM) and the finite element method (FEM) for the exterior boundary value problems for the Helmholtz equation. A circle is selected as the common boundary on which the integral equation is set up with Fourier expansion. As a result, the exterior problems are transformed into nonlocal boundary value problems in a bounded ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011